The problem is that when you push an object, the push happens at the speed of sound in that object. It’s very fast but not anywhere near the speed of light. If you tapped one end of the stick, you would hear it on the moon after the wave had traveled the distance.
For example, the speed of sound in wood is around 3,300 m/s so 384,400/3,300 ~= 32.36 hours to see the pole move on the moon after you tap it on earth.
The problem is that when you push an object, the push happens at the speed of sound in that object. It’s very fast but not anywhere near the speed of light. If you tapped one end of the stick, you would hear it on the moon after the wave had traveled the distance.
For example, the speed of sound in wood is around 3,300 m/s so 384,400/3,300 ~= 32.36 hours to see the pole move on the moon after you tap it on earth.
Wow, TIL that the speed of sound has this equivalence
It’s also why rocket nozzles can’t be infinitely thin :)
I swear I’ve seen a video of someone timing the speed of pushing a very long pole to prove this very thing. If I can find it I’ll post it here.
*Found it! https://www.youtube.com/watch?v=DqhXsEgLMJ0 I can’t speak to the rigorousness of the experiment, but I remember finding it enlightening.
AlphaPhoenix is definitely one of the best scientists on YouTube, that video is good.
Cool vid, thanks for sharing
Your math is off. The Moon is about 384,400 KILOmeters from the Earth, not meters. So 116,485 seconds, or a bit over 32 hours.
Oh right. I’ll edit my comment
Damn, so that means no FTL communication for now… 😅
Hear me out… What about a metal stick?
🤘
Metal is a lot heavier than wood. You’d never be able to lift it to the moon.
You should make it out of feathers. Steel is heavier than feathers.
But can you lift it from the moon? Gravity is a lot lower there.
Large if factual
NASA: “Hold my beaker.”
What if you had a crane?
Or a duck.
Or hope
For now
deleted by creator
deleted by creator
Exactly